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Abstract. Mathematical analysis of the Anderson localization has been facilitated by the use

of suitable fractional moments of the Green function. Related methods permit now a readily

accessible derivation of a number of physical manifestations of localization, in regimes of strong

disorder, extreme energies, or weak disorder away from the unperturbed spectrum. This work
establishes on this basis exponential decay for the modulus of the two-point function, at all

temperatures as well as in the ground state, for a Fermi gas within the one-particle approximation.
Different implications, in particular for the integral quantum Hall effect, are reviewed.

1. Introduction

1.1. The localization condition

This paper reports recent progress in the mathematical analysis of Anderson localization.
The simplifications which have been made in its derivation permit us now to access a
number of interesting properties of systems with disorder, by methods which are both
mathematically rigorous and not excessively complicated. The paper includes some new
technical statements, but we also recall a number of previously known results, derived by
various other authors, in order to present a more complete picture of the physically motivated
guestions which can be addressed by related mathematical methods.

Anderson localization was first discussed in the context of the conduction properties
of metals [1, 2], but the mechanism is of relevance in a variety of other situations (e.g.
[3]). The basic phenomenon is that disorder can cause localization of electron states (or
normal modes—in other systems) and thereby affect properties such as time evolution (non-
spreading of wavepackets), conductivity (in response to an electric field), Hall currents (in
the presence of both magnetic and electric fields), and statistics of the spacing between
nearby energy levels.

In the electron gas approximation the system of electrons in a crystal is modelled by a
gas of fermions moving on a lattice. We focus here on systems with homogeneous disorder,
which otherwise are periodic or translation invariant, at least up to gauge transformations.
The excitations of the system are described by an effective one-body Hamiltonian, which
consists of a short-range hopping term and a local potential. The one-particle Hamiltonian
is a self-adjoint operator with matrix elements of the form

H=K,,+U®+1V, (1.1)

acting in the Hilbert spac&(Z¢), wherek, , is a short-range hopping terif* a periodic
potential, andiV a random potential expressing the disorder (impurities) with a tunable
strength parameter.
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We shall not discuss here the validity of the one-particle approximation, or that of the
linear response theory. Instead, we focus on the analysis within such frameworks. In
particular, we shall demonstrate how resolvent estimates can be used to address a humber
of physically motivated questions.

For K,,, we consider the following two cases.

e No magnetic fieldK, , depend only on the differenda — y).

e Constant magnetic fieldThere is some ambiguity in the definition of the magnetic flux,
since flux differences of/e can be induced, or compensated for, by gauge transformations.
For concreteness sake, let us restrict ourselves to the operators of the form.

KX’); = e_iA"’-“8|x,y“1 (12)

with a phaseA, , which is an antisymmetric function of the oriented bondls= {x, y}.
(A, can be viewed as the line integral of the ‘vector potential—e¢/h) along the direct
path fromx to y). The magnetic flux through a plaquetkeis taken to be

Bp = _h > Arg(Ky) (1.3)
€ peap
with the argument function interpreted through its principal branch-ime < Argz < 7. At
non-zero field, translation invariance is possible only in the sense of magnetic translations,
which combine shifts with gauge transformations, i.e. are unitaries of the form

Ua)lx) = € %®|x 4+ q). (1.4)

In such casesk = U(a)K U (a)* implies ordinary translation invariance for gauge invariant
quantities, such ax, ,| and|(x[(K — E — in)~|y)|. (The fact that the composition law for

the magnetic shifts provides only a projective representation of the translation group does
not affect our analysis.)

The potentialV is realized as a collection of independent identically distributed random
variablesV,, whose probability distribution may be of the forrtw) dv with r(v) a bounded
probability-density function. (These conditions may be relaxed: the results described
below are valid also for a broad class of correlated randomness, more singular probability
distributions forV, and Hamiltonians with off-diagonal disorder, i.e. randomnesk,i.)

Of central importance in the analysis is the Green function, i.e. the kernel of the resolvent
operator

. 1

G, yi E+in) = (g o). (1.5)
The behaviour of this function at= 0+ reveals a great deal about the spectral properties of
the Hamiltonian (e.g. discrete versus continuous spectrum), the nature of its eigenfunctions
(localized or extended) and the response of the system (e.g. to electric fields) at the linear-
response level.

A technically convenient signature of localization is a bound on the fractional moments

of G(0, x; E). The explicit condition is that for energids in an interval g, b] and some
O<s <1,

E(G(x,y; E+in)’) < C'e ! (1.6)

for all n # 0. Here and hencefortlz represents the average over the randomness and
C < oo and u > 0 are constants which may change from line to line, but are to be
understood as independent pf The value ofs is of little consequence (if the condition
(1.6) holds for some then by Hilder inequality it extends to all smaller> 0) but the
restrictions < 1 permits us to avoid the divergence explained below.
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Figure 1. Different regions (schematically) in which localization occurs for an operator of the
form H = Ho+AViandom (1) high disorder, (2) extreme energies, (3) weak disorder, away from
the spectrum oflp, and (4) band edges. The fractional moment methods have been developed
for the first three regimes.

The condition (1.6) was established for a broad class of systems, in any dimension,
under any of the three conditions: (1) high disorder, (2) extreme energies [4], and (3) weak
disorder [5] away from the spectrum of the unperturbed operatoe (0), see figure 1.
Localization is known also to occur at the band edges (case 4), for which it can be proven
[6, 7] by the multiscale approach of ¢tilich and Spencer [8]. However, in this more
delicate situation condition equation (1.6), which leads to the implications discussed below,
has not yet been established. Neither has the condition been derived in the continuum (for
which localization results can be found in [9-12, 3, 13-15]).

We shall recapitulate below why equation (1.6) can be viewed as a natural technical
expression of localization, and present a heuristic derivation along the lines of [4]. First,
however, let us list some of its implications.

1.2. Physical implications of the resolvent condition

There is a growing list of readily identifiable physical properties of an electron gas which
follow from equation (1.6), some of which have not been derived without it.

A new statement which is added here to that list is the exponential decay of the two-
point function in the ground stat®)) if the Fermi energy,Er, falls within a range of
energies for which equation (1.6) holds. In terms of Fock-space fermionic operators

E((01y )y (»Ioy) < ce (1.7)

or, in terms of the relevant one-particle spectral projectiyy,, on the energy range
(_009 EF]y

E(|{x|P<g,|y)]) < Ce 1, (1.8)

Remark.

() If Ep falls in a band of extended states the above kernel decays by only a power
law.

(ii) The derivation of the exponential decay, given below, does not require equation (1.6)
to hold for all the energies below . Thus, it also applies to the case in which the Fermi
level is in a localized regime above a number of bands of extended states.



6786 M Aizenman ad G M Graf

(iif) The decay presented in equation (1.8) has interesting implications on electrical
conductance, both in the absence and in the presence of a magnetic field (Hall conductance),
which are discussed below.

Before we turn to the derivation of the conditions (1.6) and (1.8), let us list some other
physically meaningful implications of equation (1.6), some derived by other authors, which
may be useful to have listed together. These include the following.

e Pure-point spectrum. The spectrum of the operatol in the interval i, b]
almost surely consists only of (non-degenerate) eigenvalues with exponentially localized
eigenfunctions.

The implication is through either the dynamical localization expressed in equation (1.9)
or the Kotani argument [16], as further explained by Simon-Wolff [17]. This argument
yields the useful principle that those decay properties of the resolvent which hold for
almost all energies in some interval —in a sense which is not affected by randomizations
which refresh the site potentials—are typically manifested also by all the eigenfunctions the
operator may have in that interval. (The property of interest here is the exponential decay.)

e Dynamical localization.Assuming equation (1.6), wavepackets of states with energy
in the range ¢, b] do not spread. The key estimate is ([5])

E(sup|(x| P, e ™ y)) < cem 1, (1.9)
t

One may note that equation (1.9) is a stronger statement than the exponential localization
of eigenfunctions (it was not available before equation (1.6)). Implicit in its derivation is
an extension which permits us to replacé’®¢ by an arbitrary bounded functioyi(H).
Expressed in terms of the eigenfunctions, with energigshe assertion is

E( 3 |wn<x>||wn<y>|> < cethl, (1.10)

E,€la,b]

e Absence of level repulsion.Minami [18] proved that the localization condition
equation (1.6) implies that thiecal distribution of the energy levels in the interval, p],
for the system in£L, L]¢, converges (ad — oo) to the Poisson law—i.e. the energy
levels appear to be independently distributed.

The decay presented in equation (1.7) has interesting implications on conductivity, both
in the absence and in the presence of a magnetic field.

We refer here to the conductivities as given by linear-response calculations. We shall
not address here the interesting questions concerning the validity of such approximations,
and the role of edge currents.

e Vanishing of the d.c. electrical conductivity in the absence of magnetic féddshall
see below that, for any dimension,

condition (1.6)= o, ;(Er) =0 (for Er € (a, b)) (1.12)

whereo is the d.c. electrical conductivity of an electron gas with Fermi endtgyat the
zero temperature limit and at zero magnetic field, based a linear response calculation (Kubo
formula):

2
- —lim™L - : L2
01 (Ep) = lim — );de,x,ch(o,x, Er +inl?. (1.12)
Let us remark that this expression for the conductivity follows from the more standard Kubo
formula ([2, 19]) under the assumption of finite conductivity. (For completeness, we present
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the argument in appendix A.1.) An earlier proof of the vanishing dfn this form) was
provided in [8] for the regime covered by the ‘multiscale analysis’.

In the presence of a magnetic field, one is interested in the Hall conductance. The linear
response calculation (see appendix A.2) is facilitated by the condition

E( > |x|2|<0|P<E|x>|2) < o0 (1.13)

xeZ4

which is implied by equation (1.8). The Kubo formula for this situation is
O'i,j(E) = iTr(PgE[[)Ci, PgE], [Xj, PgE]]) (114)

e Integral quantum Hall effect (IQHE) (two-dimensionalBellissard, van Elst and
Schulz-Baldes (BES) [20] proved that if equation (1.13) holds for a two-dimensional system
then at the corresponding Fermi energy the Hall conductangé€E ) is an integerxe?/h
and is constant throughout intervals, suchaa$] of equation (1.9), in which the localization
length is uniformly bounded.

Results leading to this conclusion were also developed by Avron, Seiler and Simon
(AS?) [21].

To put this result in a clearer perspective, consider the continuum case of a Landau
Hamiltonian weakly perturbed by a random potential:

1/i BAx 2
H = P (ﬁZ‘i‘e 2 ) + AUrandon(X) (1.15)
where Urandor{x) could be of the formUyandon(x) = Zj n;V(x — x;), with {x;} randomly
distributed points andn;} independent random coefficients. Had all the results which are
proven for the lattice Hamiltonians been true in this case, one could deduce that foi.small
the Hall conductance, as a function of the Fermi energy exhibits several plateaux, increasing
asonal = (¢?/h)n. It would indeed be of interest to see an extension to the continuum of
the localization analysis discussed here.

The argument of BES [20] is based on a number of sophisticated results of non-
commutative geometry (in particular, theory developed by Connes). To make these results
clearer, we include below a direct and simple derivation of the implication of equation (1.8)
for the IQHE. The discussion incorporates ideas which were developed By[24$,
discussed here in the context of operators with random potentials under the localization
condition equation (1.8).

2. Localization bounds for the resolvent

To convey the key arguments leading to localization bounds let us review the derivation of
equation (1.6) for the situation with high disorder, or at extreme energy (cases 1 and 2 in
figure 1). Furthermore, let us consider the case where the magneti@fisléither zero or
constantk, , is restricted to the nearest-neighbour pairs (&g, = the incidence matrix),
andUP®" = 0. The equations defining the resolvent (with= 0 and iy absorbed inE) is:
(H—-E)G(x,0; E) = éx,0, OF

(E—=2AV)Gx, 0 E) = Z Ky x4nG(x +n,0; E) — 8y 0. (2.1)

neZd,|n|=1

The solution of this equation does not propagate well (it attenuates, or decays exponentially)
in regions wheret — AV, falls out of the spectral range of the hopping operator seen on
the right-hand side, i.e. whell& — AV,| > 2d. If X is large enough (oE is very large),
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most of the lattice will belong to this attenuation set, and one may exgéctO; E) to
decay exponentially inx|, indicating exponential localization.

The big gap in this intuitive argument is that one still needs to address the possible
tunnelling between the sparse sites at whiEh— AV, | < 24. This gap was closed by the
‘multiscale analysis’ of [8], which was developed to handle the technical problems caused
by possible resonances, manifested through small denominators. An alternative approach is
to look at suitable moments @ (x, O; E), with the hope that the averaged quantities will
be informative enough. Here the small denominator problem shows up as followsf for
taken to be a finite matrix (an#é real),

AV(|G(x,0; E)|) = 00 (2.2)

where the average is either over the enefgyntegrated over any interval which intersects
the spectrum, or over the values Bf. The latter singularity is explained by ‘rank-one
perturbation formulae’ (or, alternatively, Cramer’s rule), e.g.

1

Gx,x; E)y"1 4V,

whereé(x, x; E)—the value ofG(x, x; E) for V, changed to 0—does not depend Bn

In a system in whichV, is independent of the values of the potential at other sites, there
will be rare resonant situations, in which the denominator in equation (2.3) is very small.
Despite its rarity, this phenomenon leads tgs‘1ail’ in the distribution of|G (x, x; E)|, as

well as of the other matrix elements, and to the divergence of the mean values expressed
by equation (2.2).

Once the nature of the singularity is understood, one may see how to keep it from
obscuring the picture. The key observation is that this singularity does not cause blow-ups
in fractional moments, i.e. averages|6f(x, 0; E)|* with any O< s < 1. Averaging both
sides of equation (2.1) raised to such a powet @ < 1, one may obtain the following
relation (with the help of a decoupling argument, discussed in [4, 5])
cE(AVy — EP)E(IG(x,0; E)') < Z E(IG(x +n,0; E)|') + 8.0 (2.4)

neZd,|n|=1

with ¢ a finite constant depending on the distribution of the random potential. In the above
relation the effect of the rare resonances is averaged out, and the simple argument indicated
below equation (2.1) can be followed in a conclusive way. When
___ a4

cE(|AV, — E|*)
equation (2.4) implies thakl(|G(x + n, 0; E)|*) is a strictly subharmonic function on the
lattice (its value atx is less thany (< 1) times its average over neighbours). This readily
implies the exponential decay expressed in (1.6), for strong disordarge), and at extreme
energies. This argument leads to the following result.

Theorem 1For a random Hamiltonian as in equation (1.1), withindependent variables
having the probability distributiom(v) dv with r(v) bounded, if for some &< s < 1 and
uw>0

G(x,x; E) =

(2.3)

y (2.5)

2 1/s
) o N .
> 2||r| (1_s > IKoul'e" ) (2.6)
xezd
then
E(G(x, y; 9)I") < Ceh | 2.7)

uniformly in z € C\ R.
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The complete derivation is given below in appendix B, where we reproduce in a slightly
streamlined fashion the argument of [4], and derive the exponential decay in a more general
set-up, in which the probability distribution is not required to have a density with respect
to dv. This approach can also be applied to other regimes, where the resolvent can be
studied through other equations, e.g. the relation to the unperturbed resolvent operator:
G = Go — GoAVG ([5]), yielding bounds which are uniform in the two natural cut-offs:
finite volume, and imaginary energy shift j22].

3. Exponential decay for the two-point function

We now turn to the implication of equation (1.6) for the two-point function, which for
temperaturel” > 0 is given by

WY r = E(x|0r(H — Er)|y)) (3.1)

with the Fermi distributiord; (1) = (14 expu/T))~L. ForT = 0: 6o(u) = I[u < 0].
At T > 0 this function always exhibits exponential decay, but at a rate for which the
general bound—independent ¥f and E p—vanishes withT':

|(x|0r(H — Ep)ly)| < Ce 7T (3.2)

(as follows from theorem 3). We can say more under the localization criterion of
equation (1.6) as follows.

Theorem 2If equation (1.6) holds at the Fermi enerd then the two-point function
decays exponentially fast at the ground state (filled ‘Fermi sea’) and also at positive
temperatures—with the correlation leng#) étaying uniformly bounded a& — 0, i.e.

E(|(x|67(H — Ep)|y)]) < Ce I8 (3.3)
forall T > 0, and also
E(|(x|P<g,|y)) < Ce 1% (3.4)

(corresponding to the cage= 0).

Proof. To extract the information from the resolvents, it is convenient to employ the contour
integral representation. For the projectifnz, we chose the path to consist of segments
joining —oo — i, Ep — i, EF + i, —oo +i. Splitting the integral, we obtain

P<p, = Qu(H — Ep) + Q2(H — Ef) (35)
with
1 ! 1
010 = 5 / dn- (3.6)
T J_1 In—z
1 0 1 1
QZ(Z):Z_ni wdu[u—i—z_u—i—i—z} 3.7)

(due to the randomness, the probability of there being an eigenvalue exactly at the energy
Er is zero [17], a fact immediate from 1.6).

For T > 0, 67(z) has poles atAT x {odd integers which grow densely on the
imaginary axis ag’ — 0, with residues equdl-T). Evaluating the Cauchy integral along
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the boundanf™ of the strip|Imz| < n with n = [hr]Z”T ~ 1), where [] denotes the
integral part ofX, one findsd;(H — Ep) = 6r1(H — Er) + 6r2(H — EF) with

1

Ora() =T - (3.8)
ded;\%‘;ﬂ«q innT —z
1
br2(2) = 2 f dw b7 () —
—Z
1 1
/ du 07 (u) |:u—in—z_u+i77—z:|' (3.9

The sum defining9T,1(H — Er) looks, at smallT, like a discrete approximation of the
integral seen iND.(H — EF).

In each caseT( = 0 andT > 0), one may expect the first term to be the more delicate
one, since it involves resolvents at arbitrarily small distances (of the complex energies) from
the real axis. Indeed, it is at that point that the assumed condition equation (1.6) enters.
For the more regular term€),(H — Er) and6r(H — Er), a starting point is provided
by the Combes—Thomas estimate (reproduced below in equation (D.3)), however, we need
to improve on that in order to address the question of the convergence of the resulting
integrals. (This question can be avoided in the case in which the potential is uniformly
bounded # > Ey > —o0) by closing the contour at any point belai.)

More explicitly, we estimate the first term as follows:

E(|(x|Q1(H — Ep)[y)]) /dnE(IG(X y; Er +in)))

1
- / dpn T VE(G(x, y; Er +in)|°) < Ce# ! (3.10)
T J-1

where we have combined the assumed resolvent condition equation (1.6), with the general

operator boundG (x, y; Er +in)| < n~1. A similar estimate holds foE (|(x|67.1(H)|y)|),

the difference being that the integral ougis replaced by a corresponding Riemann sum.
The exponential decay for the corresponding second pair of teRWgx|Q-(H —

Er)ly)) and E(|(x|6r2(H — EF)|y)|), is a direct consequence of the following general

result, whose proof is given here in appendix D. O

Theorem 3Let H be as in equation (1.1) anfl be a function analytic and bounded in the
strip | Im z| < n(by || Flls)- Then

[(x|F(H)|y)| < 18V2||F || (3.11)
for any u such that the quantity(u) = ", ;4 |Ko .| (€ — 1) satisfiesb(u) < n/2.
In fact, this result relies o having a representation (D.2) analogous to (3.7) and (3.9).

4. Hall-Kubo conductance as a charge-transport index

The analysis described above applies in particular to systems with a uniform magnetic
field. This case has, of course, attracted a great deal of attention due to the remarkable
phenomenology associated with the quantum Hall effect (QHE). The IQHE [23] (unlike the
fractional case [24]) is understood now to be accountable for within the electron-gas picture,
in which the particles (or excitations) are subject to a one-patrticle effective Hamiltonian of
the type considered here (see, e.g. [25]).
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It has been pointed out that under suitable circumstances the valugg:pé2 express
topological indices, which would account for both the observed integer values and for the
robustness of the phenomenon of IQHE [26-29]. Curiously, the robustness is re-expressed
in the fact that similar conclusions are reached through different explanations, in which the
topological aspect of Hall conductance appears in different disguises.

In this section we recount one of the approaches to Hall conductance in two dimensions,
employing the charge transport index which was introduced and used very effectively by
AS? [21]. The only addition in this paper to the above work is the derivation of the
exponential decay of the kernel of the projection oper#ter, , equation (3.4), which (in a
weaker form, e.g. fast enough power law) is essential for the integrality of Hall conductance.
Another approach, which was developed by BES [20] will be mentioned in the next section.
BES proceeded along a slightly different path, employing the Chern-character view of the
Hall conductance and theorems proven in the context of ‘non-commutative geometry’. The
latter work had a more intense focus on random systems, and stated conditions under which
Hall plateaux exist. However, as noted in both works, the seemingly parallel tracks actually
meet, through a formula discovered by Connes.

The first step may be the formulation of a mathematical expression for the Hall
conductance within the model considered here. One intriguing option is based on the charge
pump mechanism proposed by Laughlin [30]. Consider a system in which the charges are
confined to a plane (e.g. a suitable interface) and the magnetic field is changed through
an adiabatic process which results in an increase of the flux through a finite rBgiyn
A®. Changes in the magnetic field are accompanied by an electric figldrcluding in
the area surrounding®, and current—whose density we denote by The rate of charge
transport across a contodrencircling D is

AQ

=@QJ -ndt
At ¢

=aDy§g-adz—aﬂfg-@ (4.1)
C C

whereop andoy are elements of the bulk (homogenized) conductivity tensor (within the
plane)

J=0E o= (UD _C’H). 4.2)
OH Op

The last integral on the right-hand side of equation (4.1) (the induced electromotive force)

is tied, by Lenz’s law, to the flux changed®/ds. The first term vanishes in situations in

which the direct conductivitydp) is zero. In that case, the integral over time yields an

expression for the Hall conductance as the ratio of the transported charge to the flux change:

_AQ
= 3o
One may note that it might be easier to analyse increments of flux in multiplégeof

since the addition of such a flux quantum can be accomplished by means of a gauge
transformation, e.g.

Uyt (x) = €%y (x) 4.9

wherea(¢ Z?) is the location of the added flux line afigkx) is the angle of sight from to

x (Arg(x —a), in the terminology of the complex plane). The natural geometry for a charge
pump based on this mechanism is the Corbino disk, where the transfer occurs between
two conducting rings, with the region between them filled by material whose microscopic

oH (4.3)
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structure is modelled by the system discussed in this paper. Detailed analysis of this effect
was presented in the works of Laughlin [30] and Halperin [31].

Motivated by considerations related to the above discussiorf, [ proposed an
interesting representation of the Hall conductance in the model discussed hereTia-tBe
limit. They prove thatif the two-point function(x|P<g,|y) decays fast enouglthen in a
well-defined sense only a finite number of states are moved across the Fermi level. The
mathematical expression of this is an index, which for a pair of projectirend Q of
compact difference is defined as

g Py =y : Pw=0}
Index (P, :=dim eH —dim eH 4.5
p.oyi=dmbyer Dh =0 b -ambyer [V =0 (45)
(if (P — Q) is a compact operator, the above dimensions are finite).
Assuming that the above charge transport index coincides also with the charge
transferred in the course of an adiabatic transition frtinto UHU*, (A® = h/e), AS?
take for the Hall conductance the quantity
£
hje
The AS study of this quantity rests on the following gem which they added to the theory
of Hilbert space operators.

oy = E(lndEX(PgEF,UangFU:)). (46)

Theorem 4 ([21]).Let P and Q be a pair of orthogonal projections in a separable Hilbert
spaceH, whose differenceP — Q is a compact operator. If for some integer> 0 the
operator(P — Q)?"*! is trace class, then (with no further dependence:)pn

tr(P — 0)¥*! = Index (P, Q). 4.7

This fact has a simple explanation through the observation that the spectrBra @
(which consists of a collection of proper eigenvalues in the intervdl L]) is symmetric
under sign change—except for possible eigenvaluaslatA particularly elegant proof can
be found in [32].

Further properties of the index are:

(i) additivity:
Index (P, Q) + Index (Q, R) = Index (P, R) (4.8)
for projectionsP, Q, R which differ by compact operators, and
(ii) stability:
Index (P, Q) = Index (P, UQU™) (4.9)

under unitaried/ with compact differenc&U — I).

(AS? prove the above statements by reformulating IndexQ) as the Fredholm index
of PU P in RangeP, and invoking known properties of the latter.)

Two unitary operatord/, and U,, which differ only in the location of the extra flux
line, are equivalent as far as the Hall conductance equation (4.6) is concerned, since:

® (Uan*l — I) is a compact operator and, by implication,

(ii)

Index (U, PU;, U, PU;) = 0. (4.10)

It follows that the charge transport index does not depend (either in its existence or in
its value) on the location of the extra flux line.

The statement that some power Bf= P — U, PU; is trace class may be verified by
making use of the following lemma.
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Lemma 1.For an operator with the matrix elemerfs,

1/3
ITls= (T3 < ) (Z |Tx+h,x|3) : (4.11)

beZ? NxeZ?

Proof. One may apply the norm’s triangle inequality to the decomposifica }", . T,

whereT%) = T ,6,.,. For each operator in this sumiT® |3 = |T®*T®|3)2 where
(T*T®), = |Te1p4]%8,,y is a diagonal operator for which the norm calculation is
elementary. O

The lemma implies

1/3

E(ITl < ) (Z E(|Tx+b,x|3)> : (4.12)
beZ2 \xeZ?

If the Fermi energy is at a value for which the localization bound equation (3.4) applies,

then the conditiorE (|| T ||3) < oo is satisfied forT, , = P, ,(1—e @%W-60D) a5 s easily

seen from the bound

E(|T |3) < E(lP |)|l _ e—i(ea(x)_ea(y))|3 < Ae_l”x_y‘ Clx — y_|3 (4 13)
X,y X X,y <X 1+|x_a|3. .
In this situation, the combination of equation (4.12), theorem 4 and some elementary algebra,

imply that:
(i) the charge-transport index is well defined,
(ii) it is given by
Index (P<g,, U, P<g,U) = tr(P<g, — U, P<i, U")?
= 2i Z Piy Py Py [SIN(L(u, a, x)) 4+ SiN(L(v, a, u)) + Sin(Z(x, a, v))]

x,u,veZ?

(4.14)

with ¢ an arbitrary point inR?\Z?,

(i) the above takes an integer value (which does not depend).on

Furthermore, as noted (in slightly different contexts) by Connes [33], BES and
AS? Index (P<g,, U, P<g,U}) is a translation invariant function of the randomness (a
consequence of equations (4.10) and (4.8)). Since this function is also measurable and
integrable, Birkhoff's ergodic theorem implies that the index does not fluctuate, in the sense
that for almost every realization of the random potential it takes the value given by its
mean. A significant corollary is that even the mean takes an integer value, i.e. the Hall
conductance, as represented by equation (4.6), takes the values

2

on = %n with n € Z (4.15)
and is given by the formula
62 . . . .
oy = ZZI Z E(P, P, ,P,)(sina + sinB + siny) (4.16)
x,u,veZ?

or, using translation invariance,

2
on = %z > E(PouPuyPio)(sine +sing + siny) (4.17)

u,veZ?,ael?
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where {«, B, y} are the angles described explicitly in equation (4.14), and in the second
expression the summation ovelis replaced by a sum over, varying over the dual lattice.

The above discussion also leads to the statement, formulated by BES [20], that the Hall
conductance is constant in regions in which a localization estimate, like our equation (1.8),
holds uniformly inE. To see this result, it is convenient to first relate the above expression
for oy with the other expression which was proposed for it, in what is known as the Streda
formula [34].

5. Relation with the Streda—Kubo formula

In his work on non-commutative geometry, Connes [33] presented a remarkable formula,
whose discrete version reads as follows. For any e 7?2

Z [sin(Z(u, a, 0)) 4+ sin(Z(v, a, u)) + sin(Z(0, a, v))] = 7 (upv1 — u1v2)
aeZ?

=7uAv. (5.1)

(For completeness, a streamlined derivation is included here in appendix F.)
Using Connes’ formula, the expression (4.17) derived for the Hall conductance starting
from the charge-transport index is transformed to (wWith= P<g):
2
on =211 S E(PouPuyPoo)u Av) (5.2)
h u,veZ?

2
%2niE((0|PX2PX1P|O) — (0|PX1PX,P|0))

2
%ZﬂiE((Olp[[Xz, P].[Xy. P]|P|O)) = 02,4(E). (5.3)

(By translation invariance, the right-most projection in equation (5.3) can be omitted.)

The above expressions are of interest for a number of reasons.

(i) In a suitable set-up, the expression provided by equation (5.3) takes the form
of a Chern number, and thus it offers another perspective on the topological aspect of
Hall conductance. (This topic will not be covered here, as it is extensively discussed in
[27, 35, 20].)

(i) The above expression coincides with the Kubo formula equation (1.14) for
conductance, based on a linear response calculation, for example like the one presented
here in appendix A).

(iif) The expression provided by equation (5.2) is very convenient for the derivation
of sufficient conditions for the continuity of the Hall conductance, i.e. for the existence of
plateaux. The following result is fashioned on a theorem formulated by BES [20] (where
the assumption is slightly different).

Theorem 5 (slightly modified version of a result in [20for a random Sclidinger opera-

tor, H = K, , + AV,, with K incorporating a uniform magnetic field, as in equation (1.2),
and V, a random potential whose probability distribution is invariant and ergodic under
translationsoy (E) (the zero-temperature Hall conductance at Fermi enérpys a con-
stant integral multiple 02/ h throughout each interval of energi€s over which for some

g > 2 the quantity

& =Y E((0P<g|x)|)"|x| (5.4)
xezZ?

is uniformly bounded.
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This statement depends on the continuity of the integrated density of states,
E({0| P<£|0)), a fact which is known for all translation invariant random operators in the
setting equation (1.1), [36].

Proof. By an elementary telescopic decomposition, and an application of translation
invariance, equation (5.2) implies, foyd+ 1/q + 1/r =1 (r > 1),

o (E + AE) — oy (E)| (5-:9)
2 2
<35 3 E(PIOVE(P] JOYE(AP, o) lully — ul
h u,vez?
682 # 1/ 2 1/r
< | 2 BUPEIDY Il | E(APool) (5.6)
ueZz?

where P# is eitherP<; or P<pynr, AP = P<piap— P<p = P, e+aE], and use was made

of the Cauchy—Schwarz inequality P, 0| < |A Pool. The last factor on the right-hand side
tends to zero by the aforementioned general continuity results, while the other factors stay
bounded under the assumption equation (5.4) that the localization lengths stay uniformly
bounded. O

An explicit estimate showing the continuity of the integrated density of states (though
in less than full generality) is the Wegner bound [37]:

E(|APool) < A HAE||7 [l (5.7)

which is valid for random Hamiltonians where the probability distribution for the potential
has a bounded density functieV) < ||7|lc-
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Appendix A. The Kubo formula for the electric conductivity

In this appendix we present the linear response calculations leading to the expressions we
invoked for the conductance. In particular, we shall reconcile the expression (1.12) for
with another familiar form of the ‘Kubo formula’. We shall not address here the question
of the validity of the linear response theory, which requires a more thorough analysis.

To derive the Kubo linear response formula for conductivity in a system of non-
interacting Fermi particles consider switching an electric figl@diabatically through the
time-dependent Hamiltonian

H(t)=H+E - xée" (—o0 <t <0, 71 0. (A1)

The unperturbed density matrix shall be in equilibrium w.rtH, i.e. [p, H] = 0. A
typical example is the Fermi distribution

p=0r(H— Ef) (T > 0. (A.2)
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The perturbed density matrix(¢) satisfies the initial value problem

d . . i i
g PO =—H®O,p0]  lim ¥ pne™ =p. (A-3)
To first order inE (the linear response theory) the solution to equation (A.3) is
0 . .

PO p=—i [ dierd(E 1 ple . (A4)
For the current density due to the field this yields

J=—Tr@(p©) —p)) (A.5)
wherev = i[H, x] is the velocity and Tr denotes the trace per unit volume:

TrA = lim [A|7Y) (x|Alx). A.6

AWII%(II) (A.6)

Thereforej; = o; ; E;, with

O . .
0 =— I'm Tr <[ dre”e ' H, x;]e"[x;, ,o]>. (A7)

Translation invariance permits one to replace here Tr by an average over the disorder of the
diagonal term:

TrA = E((0]A,|0)). (A.8)

The ergodic argument enabling equation (A.8) was presented in a similar context in
[20]. Let us consider the probability space whose points are the random environments, i.e.
potentialsw = {V,},cz, and letT,w = {V,_,},cz« be the shift bya € Z¢. We note thaf,
act as ergodic shift. An observahle= {A,},cq is Stationary if

U@A,U(a)™ = Az, (A.9)

for all vectorsa which are periods ot/?®". HereU (a) are the magnetic translations (1.4).
The Hamiltonian (1.1) is stationary in this sense. For stationary operatorgsith|y) = 0
for |x — y| large enough and afb € Q the trace (A.6) almost surely takes the value given
by the right-hand side of equation (A.8). That expression is validf®f = 0, otherwise
|0) should be replaced by an average oler with x ranging over a unit cell. Note that
this defines a linear, positive, commutative functionaldof This functional then naturally
defines a trace class of operators, to which equation (A.8) extends by continuity.

We now separate the discussion into two cases: zero magnetic field where the system is
time-reversal invariant, and non-vanishing magnetic field, in which case we are interested
in the Hall conductance.

Appendix A.1. Time-reversal invariant systems

At non-zero temperatures the density matrix is of the fggm= f(H) with a smooth
function f with || /|1 < oo. In such a case, for time-reversal invariant systems, where
(A.7) is symmetric in{i, j}, equation (A.7) can be brought to the form

: ) = f(w
0i; = 7 lim Tr(// 8, (. —M)% dPov; dp@vj) (A.10)

wheres, (x) = (n/7)(x?> + n®~1. Equation (A.10) corresponds to a familiar form of the
Kubo formula [2, 38].
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We shall now see that this formula yields the expression seen in equation (1.12):

2
- . n Lo
;i (E) =lim — X, E(|GO, x; E 41 . All
1y (E) =W = 3 xy BUGQ.x; E +im)) (A11)

(A tilde is added to avoid confusion.) The main assumption we shall use ig;th@f) is

finite at all energies Roughly speaking, this corresponds to a situation where the motion

in the absence of an electric field is diffusive, at most. On physical grounds one may
expect that to be the case in the presence of disorder, regardless of localization. Let us
remark that a related expression for the conductance can be based on the Einstein relation
of conductance with the diffusion constant [19], however, we do not use this relation here.

Theorem 6 Assume that
supn® > x’E(|G(0,x; E +in)[*) < constant (A.12)

>0 yezd

with a finite constant which applies for all energies. If the limit in equation (A.11) exists
for all E, then

oij = — / FU(EYG: (E) dE (A13)

where f(E) = 07(E — Ep) ando;; = 0, ;(T) (T > 0). ForT — 0, in lieu of the
last assumption we require that the limit— O in equation (A.11) exists foE in some
neighbourhood o r, and is continuous there. Under these assumptions,

grl%a,-,j :5i,j(EF)~ (A14)

Clearly, equation (A.14) is the limiting expression for equation (A.13)as0, where
f becomes a step function. However, a small clarification may be needed, since under
the weaker assumption made fér = 0 the limit in equation (A.10) may exist only
for subsequences, — 0. Nevertheless, equation (A.14) means that the double limit
limz_olim,_qo;; is unambiguous.

Proof. We first address the right-hand side of (A.13);;(E) is the limit asy | O of

2

Ui F N2

—E xiE(G@QO, x; E +
xix; E(]G(0, x 7))

xezZ4

2
- %E<<0|[xi, (H — E +in) 7 [x;, (H = E —in)~"|0)
2
= TT{(H — £+ u(H = E+in) ™ (H = E— i)~y (H — E~in)7]

=7 // 8,(A — E)é,(n — E)ym; j(dA, du) (A.15)

wherem; ;(dA, du) = Tr(dPg, v; dP¢, v;) is the conductivity measure [38]. Under the
assumption (A.12), the limig | 0 may be interchanged with thé-integration seen on the
right-hand side of equation (A.13). We thus obtain

o+ / f,(E)O'i’j(E) dE = ||IJ87T // gn()\, ,u)m,;j(d)\, d[,l.) (A16)
n
with

1
g = [ d fo A [f(E) — f/(5% + (1 — )18, (- — E)S, (1 — E). (A.17)
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The claim equation (A.13) is thus equivalent to the assertion that the right-hand side of
equation (A.16) vanishes. Let us note that;(dx, du) is a finite measure. Using nothing
more than the smoothness 6f one can show (we skip the analysis here) thatg((r, 1)
is uniformly bounded, and (ii) it tends to zero pointwisera$ 0. Thus, (A.16) vanishes
by dominated convergence.

The zero-temperature limit follows by elementary analysis. O

Appendix A.2. Systems with a decaying two-point function

Let us return now to the expression equation (A.7) for conductance, and discuss it in the
presence of a magnetic field. Our goal is to replace it by a more explicit formula. We focus
on the zero-temperature limit, whepe= P<g,. The following argument, which is related
to one presented in [20], applies under the (localization) assumption of rapid decay of the
matrix elementg0| P<p|x).

The Hilbert—Schmidt ideal

T = {A|TrA*A < oo} (A.18)

is a Hilbert space with inner produ¢f, B) = Tr A*B. The linear map;; on 7 given by
Ly (A) =[H, A] is self-adjoint. Its resolvent is seen to be

0
Ly +in~HA) = —i/ dr e ' At (A.19)

for n > 0. Thus, equation (A.7) has the appearance of
0ij = —ilIm Tr(Ly + in) 1Ly (x)x;, p)). (A.20)
n

In this form, one is tempted to apply the spectral theorem, which implies that
Ii% Ly +in LyA)=A (A.21)
n

for A e (KerCy)t. However, x; is not even in the spac€, and hence neither
equation (A.20) nor eq:spectral applies. In the following argument this difficulty is resolved
through the replacement af by [[x;, P], P].

At zero temperature = Pz = P is a projection and we have[ P] = P[x;, P]
(1-P)+(1—P)[x;, P]P. The substitution of this into equation (A.7) amounts, by cyclicity,
to the substitution ok; there by the following expression

(1—P)xiP+Px,-(l—P)=[[x,~,P],P]. (A22)
Unlike x;, the above quantity is in the spaZeprovided
Tr([x, P]*[x, P]) = E( > |x|2|(0|P<E|x)|2> < 0. (A.23)
xeZd

Furthermore, in that casexf[, P], P] is also in (KerLy)*, since for anyB € Kerly we
have T(B*[[x;, P], P]) = Tr([P, B*][x;, P]) = 0. That makes equation (A.21) applicable,
and the conclusion is
0, j(E) = —iTr([[x;, P], Pl[x;, P]) = iTr(P[[x:, P, [x;, P]]). (A.24)
Note thato; ;(E) is antisymmetric and that, in particular, the longitudinal conductivity
vanishes. Ind = 2 it is an integer divided by ;72 following the results of [20, 21] and
reviewed here in sections 4 and 5. If the Hamiltonian (1.1) is time-reversal invariant, which

requires the absence of a magnetic field, the tease(E) is also symmetric and hence
vanishes altogether.
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Appendix B. Exponential decay for the Green function

The following is a rigorous derivation of equation (1.6) for high disorder, along the lines

of [4] but with somewhat more explicit bounds. As mentioned already, the argument can
be extended also to other regimes. We allow the probability distribution to be of a more
general type than considered in theorem 1.

Definition. Let 0 < T < 1. A t-regular measurg(dv) is one satisfying
g[v — &, v + 8] < constants®

forall v € R, 8 > 0, in which case we leM,(g) be the optimal (smallest) choice for the
constant.

Such a measure need not have a densjtydd = r(v). If it does, withr € L?(RR) for
p=0-1)"% thenM,(q) < 2°||lr|l,. The following is the localization statement.

Theorem 1 LetO<s <t andu > 0. If

1/s
A > M (V" (C;,}Z |Ko,x|“eﬂ~") (B.1)
whereC; ; = (2r)"1(r — ), then
E(G(x, y; 2)I%) < Ce (B.2)

uniformly inz € C\ R.

We begin the proof by stating the following auxiliary fact which plays the role of the
decoupling lemmas of [4, 5]. Its proof is given in appendix C.

Lemma2.Let0<s < 1. Then

v —«af [ dgq >s/r/ 1
dg () 2= > ¢, d B.3
/"(”)w—ﬂw ’ (Mf(cn (AT (B:3)

for all z-regular measuresqd 0 # dg > 0 and alle, 8 € C.

Below we will also need a simple upper bound for the right-hand side. WeRsifito
lv — B|~* < A and its complement. This gives

/dq W —B1"° <?~/dq (v)+/ dig [lv—BI" = 1]
A

- 1—(s/1)
< t—_sMr<q>S/f( / dg (v)) (B.4)

where we minimized ovek > 0.
For the following argument it is important to know that the resolvent is a simple rational
function of each of the the potential parametevs)(at fixed values of the others. For
rr)atrices that is easily seen from Cramer’s formula. More generally,let |x) (x| and let
H be the Hamiltonian (1.1) fo¥, changed to 0. From the resolvent identity
(H=2)"' =1+ Vo(H -2 'P)(H —2)7" (B.5)
we obtain
1 G(x,y;2)
Vi + G, x50t Glx,x52)

G(x,y;2) = (B.6)
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A simple application thereof is
sup E(|G(x, x; 2)|*) < oo. (B.7)
zeC\R

In fact already the expectation w.r¥, is uniformly bounded by (B.4).

Proof of theorem 'L With no loss of generality we set = 0 and consider equation (2.1)
or, more precisely, its replacement for the more general situation (1.1):

@ —AVe = UPNG(x,0:2) = Y K yG(y.0:2) — 0. (B.8)

yezZd
To ensure existence we took the resolvent at enetgee§ \ R. Raising equation (B.8) to
the power O< s < 1 yields
2= AV = UPPIG(x, 0, D)1 < D 1K, 'IG(, 0 D)) (x #0). (B.9)
yezd

Note the particular dependence (B.6) @fx, 0; z) on V.. Upon taking expectations and
using equation (B.3) we obtain

aE(]G(x,0; 2)") < Z K« " E(G(y, 0; 2)I") (x#0) (B.10)

yeZ"

with a = Cs.. M. (q) /725,

Whena > ) .. |Ko,|*, the above is a subharmonicity statement for the function
g(x) = E(|G(x, 0; 2)|*), which combined with uniform boundedness and exponential decay
of |K,,I° is known to lead to exponential decay. The following is one of the many
methods to reach that conclusion (another can be found in [4]). It is based on subharmonic
comparison.

For a provisional uniform bound let us note th@H — z)~|| < |Im z|~! yields

g(x) < [Imz|™. (B.11)

Thus, g(x) can be viewed as an element in the space of bounded funatte(®?), and
equation (B.10) can be recast as

ag(x) < (hg)(x) (x #0) (B.12)
whereh is the operator with the kerngK, ,|*. Note that ifp € £(Z¢) with ¢(0) < O
satisfies

ap(x) < (he)(x) (x #0) (B.13)
with a > C = sup.cze D_ 70 |Kay I, theng(x) < 0. In fact, if M = sup.cz0 9(x) > 0

thenap(x) < CM and we find a contradiction by taking the supremum owvelWe apply
this conclusion tap(x) = g(x) — g(0)e *FI. The length scalg.~* is set by the condition

> IKoyl'e <a (B.14)
yezd
which is equation (B.1). Using
(he " (x) < ( > |Ko,y|"e“'-">e—“'x (B.15)
)’EZ‘[
we see thatip(x) < (he)(x) for x £ 0 and hencen(x) < 0, i.e.
g(x) < g0, (B.16)
The claim follows now by combining this with equation (B.7). O

For certain applications the following variant of equation (B.2) is useful.
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Corollary 1. Under the assumptions of theorem 1 we have

B ( G(x,y;2)

G(x,x;z)
forall z e C\R.

N
> < e Hhl (B.17)

Proof. This is actually a corollary of the proof of theorem 1. Dueitx, y; z) = G(y, x; 2)
we may, upon interchangingandy, prove (B.17) withG(y, y; z) in the denominator. We
then sety = 0 as before. A short computation based on equations (B.5) and (B.6) shows
the following dependence
G(x,0; 2) o

G(0,0:2)+i8 V. —B
onV,. If Im z > 0, as we may assume without loss, the regularizatiod by 0 ensures
that

(B.18)

1G(0,0;z) +i8|> = |G(0,0;2)|2+ 25 Im G (0, 0; z) + 82 > &2 (B.19)
because of InG(0,0;z) = Imz(O|(H — 2)"%(H — z)710) > 0. We then divide
equation (B.9) byG (0, 0; z) +i8]* and obtain equation (B.10) once more but now for

G(x,0;2) |
=E|l|l—————| |. B.20
§(x) ( G(0,0;2) + 10 ) (8:20)
This is bounded inx by (8| Imz|)~*. The upshot is again equation (B.16) wili0) < 1.
Hence

G(x,0; $ .
E M < g iyl (B.21)
G(0,0;2)+ 18
and the conclusion is by monotone convergence in the Bnjit0. O

Appendix C. Proof of the decoupling lemma

We shall need the inequality
lvf® Je]*

|U _ ﬁ|s (|u|7S + |M — ,3|7S) + m(h}'fy + |U _ ﬁ'i‘?) (Cl)

for all u, v, B € C (except for vanishing denominators). Multiplication py— 8|*|u — B|*
shows it to be equivalent to

(:::Y - 1> lu — BI° + |ul® + |v]° + <||Z:‘ - 1) lv— 8" >0. (C.2)
Since this expression is symmetricirandv it suffices to prove this fofu — 8| > |v — B|.
The triangle inequality yieldsu — B|° < |[v — BI° + |u|® + |v|*, which we apply to the two
middle terms of (C.2) so as to bound it from below by

|U|v|” T (Iul‘Y _2) W Bl > (Ivl‘Y n IulY _2> w_ B >0

||’ v lul* — Jol?

sincet ++~1 > 2 fort > 0. This proves (C.1). Replace theredy v — o and similarly for
u, B, and integrate w.r.t.du) dg (v). The result is

1 v—af

/dq (u)/dq (v) - < /dq (v)| |S /dq @ (u — o™ + lu— BI™)
lv— Bl lv— Bl

where, actually, each side comes duplicated with dummy variablesinterchanged. The

last integral is estimated by (B.4). O

lv—=B1""+u—BI"" <
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Appendix D. Analyticity and exponential decay (proof of theorem 3)

In section 3 we claimed and used the following statement.

Theorem 3Let H be as in equation (1.1) anfl be a function analytic and bounded in the
strip|Imz| < n (by || Flls)- Then

(x| F(H)|y)| < 18V2|| F[|ooe™ ! (D.1)
for any . such that the quantity(u) = >, 50 Kol (el — 1) satisfiesh(u) < n/2.

By continuity it suffices to prove (D.1) in any smaller strip. We may thus assfime
to be continuous up to the boundary. We note that under the above assuniptiassthe
representation

F(E):i_fdu[ 1. - 1.}f(u—E)
2ri u—Iin u-+in
=D x f(E) (D.2)

with D(u) = n[(u® + n?)7] and f a uniformly bounded function||(f||. < oc). In fact,
(D.2) is solved byf = F. + F- — D x F, where F.(u) = F(u £ in F10). This follows
fromDx (F.+F.)=(Dy+D_)xFandD, +D_=68+ D *D.

The proof of theorem 3 is related to the Combes—Thomas bound [39]:

|G(x, y; E +in)| < (2/n)e ! (D.3)

with u as above. In order to integrate overin equation (D.2) down to-oco we first
develop the following related estimate.

Lemma 3.With © be small enough so thai(u) < n/2,
|G(x,y; E+in) —G(x,y; E —in)| < 12pe #>=!
1

1
T ey A (D-4)

(H — E)?+n?/2

X (x|

Proof. We setE = 0 for notational simplicity. Let 2iD = (H —in)~* — (H +in)~%, and
for any bounded functiorf (x) let D; = ¢/ De™/ + e~/ De/. Since

(&/II0) 4 @U@= (G(x, y;in) — G(x, y; —in)) = 27i(x|Dys|y) (D.5)

the desired bound would follow from the statement that for Arsatisfying| f (x) — f(y)| <
ulx — y| (e.g. a function which in a suitable finite region fgu) = ulu — y|)

ILH? + n? /212Dy [H? + 1 /2] < 61/ (D-6)
To prove equation (D.6), we first group the terms as follows,
. 1 1 1 1
27T|Df = — — — — - — + " -
Hy —in  Hp+1n Hf—i—lr) Hf —1In
1 1 1 1
= Bt B~ (D.7)

Hy—in~ Hf+in Hp+in Hf —in
with H; = e’ He™/, B = H; — H, and B* = (B* — B =+ 2in). By the assumption op,
we have

IBIl < b(p) < n/2 — 37 <iB* < 3. (D.8)
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We now claim that
(Hf —in)(Hy +1in) > 3[H? +1%/2]. (D.9)
Indeed, using the positivity of the last term in

(H} —in)(Hy +in) = 3[(H — in)(H +in) — 2B*B] + 3(H — in + 2B*)(H + in + 2B)
(D.10)

and equation (D.8), we see that the left-hand side is bounded beldiHRH 12 — (12/2)].

The estimates (D.8), (D.9), and equation (D.7), readily imply (D.6). This bound,
combined with an application of the Cauchy—Schwarz inequality to the right-hand side
of equation (D.5) proves the claim made in equation (D.4). (The exponential weight is
incorporated in the left-hand side in equation (D.5).) O

Proof of theorem 3.Let us note that unlike the corresponding integral of operator norms,
the following integral is bounded:

1

(using the spectral measure representation). The claim, equation (D.1), is obtained by
combining the integral representation 6f equation (D.2), with the exponential bound
equation (D.4), and employing the Cauchy—Schwarz inequality to reduce the resulting
integral to the one estimated in equation (D.11). O

Appendix E. The in regularization

The addition of a small imaginary term ito the energy is a standard regularization,
and a convenient alternative to the finite-volume cut-off. Such a cut-off appears also
in the Kubo formula for the electrical conductivity in the absence of a magnetic field,
equation (1.12). Dealing with such expressions one should bear in mind the operator bound:
nlG(0, x; E +in)| < 1. For the conductivity given by equation (1.12) it implies that quite
generally

0n/(E) < liminf '7; gZ: lxix; [ E(1G(O, x; E +in)[) (E.1)
for any s < 2. Thus, the fractional moment localization estimate, equation (1.6), directly
implies the vanishing of the Kubo conductivity—in the absence of magnetic field.

Working with this regularization, it is useful to have also the following lemma. lIts
second bound can be used for yet another proof of the dynamical localization (1.10), which
was originally derived using the finite-volume cut-off [5] and which was provided another
derivation in [40].

Lemma 4.f (1.6) holds, and the probability distributior(dv) = r(v) dv, satisfies the
regularity conditiorr € L1(R)N L?(R) for somep > 1, then for anyE € [a, b] andn # 0,

1" B(G (v E+ i) < Ce (E2)

b
/ dE nE(|G(x, y: E +in)[%) < Ce#h1, (E.3)
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To calibrate these statements we note that without any assumptions on the self-adjoint
operatorH:

/ dE n|G(x, y; E +in)|* < 7. (E.4)

We shall only sketch here the proof of lemma 4, which is by arguments seen in [5]
(lemma 3.1) and in [22] (lemma 3). Some of the key points in the analysis are as follows.
(i) Quite generally, for any & s < 2:
|G (x, y; 2)|°
|G (x,x; 2)5
(For s = 0 the proof is by a judicious use the Cauchy—Schwarz inequalitys fer 2 it

follows from | Imz| < | Im G(x, x; z)~1|, and for other O< s < 2 it holds by interpolation.)
(i) Using equation (B.6) on the first factor on the right-hand side of (E.5) yields

MG, x; 271G, y; )l
Ve + G(x,x;2)~ 12 1G(x, x5 )
where, again by (B.6), the second quotient is independeit, df).
To derive lemma 4, one may now average first ovVer—in effect making use of the
high degree of independence of the values of the potential at different sites—and then use

(B.17). The proof is most direct for the case of bounded density (p = o0), and the
extension to more singular distributions is by arguments similar to those found in [5].

Imz||G(x, y; 2)[* < |IMG(x, x; 2)| - (E.5)

Imz||G(x, y; 2)|* <

Remark.The condition expressed by the second statement in lemma 4 implies directly the
exponential decay law
E( sup_|(x|Pnf (1)) < Ce (E6)
Fillflle<1
which is equivalent to equation (1.10). For that, one may use the resolvents for an
approximates function, writing (for f continuous): Py, ) f (H) = s—lim, o f,(H), where

Hy= 2 th ! E (E.7)
I )_E/a "H—E-inH—-E+in’ & '

The matrix elements of (E.7), can be easily brought to a form in which (E.3) implies (1.10).
The key tool is the Cauchy—Schwarz inequality, applied in the different set-ups: the state

Hilbert-space E—the average over the disorder, andfclfh dE.

Appendix F. Connes’ area formula

In section 5 an identity is stated relating two expression for the Hall conductance: one based
on the charge-transport index, and the other corresponding to the Streda formula which takes
the form of a Chern number, equation (5.3). Following is the derivation of Connes’ area
formula [33] which has been used to prove that relation. The formulation and derivation
presented here incorporate a streamlined argument of Colin degverdil, 32], shown to

us by Seiler.

Theorem 7 For a fixed tripletu®, u®@, u® e 7?2, let a;(a) € (—m, 7) be the angle of
view froma e Z?* of u+? relative tou*V (with o;(a) = 0 if a lies between them). Let
g(a) be an antisymmetric bounded function satisfying:

g(@) = a + O(®) (F.1)
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neara = 0. Then,

3
D) g(ei@) =2r Area (A, u®, u®)) (F.2)

aeZ? i=1
where Area(A(...)) is the triangle’soriented area

Of special interest to us is the case witlie) = sina, which is used here in
equation (5.3).

Proof. We may assume the triangle to be positively oriented. The statement (F.2) is true
for g(o) = . Indeed, for eacla e Z**

3 1 inside
> ai(a) =27 < : } for a { on the boundary of} the triangle (F.3)
i=1 0 outside

Thus, forg(e) = « the left-hand side of (F.2) is/2x the number of dual lattice sites
within the triangle (counting a boundary site with We@)t This number is the same for
triangles obtained by the lattice translation and reflection symmetry operations. Since this
set of triangles tiles the plane, the number of enclosed dual sites must equal the triangle’s
area.

The above observation reduces equation (F.2) to the statement thaifoe g(a) — o

3
> flai@) =0, (F.4)

ac7? i=1
A significant difference betwee)i andg is that the individual termg («; (@)) are summable
in a € Z?, since by equation (F.1¥ («;(a)) = O(la|~®) for |a|] — oo. However, each of
the three individual sums changes sign under the reflection with respect to the midpoint of
the corresponding edgéq Y + a+2)/2 € (Z/2)? (which is a symmetry of the lattice
7?). Thus even the individual sums (at givénvanish. O
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